Alec Hoyland

I'm a computational scientist at Clarifai and a PhD student in Biomedical Engineering at Worcester Polytechnic Institute. At Clarifai, I am a technical lead on a multi-million dollar ARR government R&D project, where my team designs and tests better object detection and tracking deep learning algorithms. My work contributed to a 35% improvement for some classes. For my PhD, I use advanced signal processing and machine learning to improve biosignal data collection and analysis, using 90% fewer samples for the same accuracy.

Personal Data

LOCATION:	Worcester, MA	PHONE:	774-372-1164
EMAIL:	entropy vsenergy @posteo.de	WEBSITE:	https://alec-hoyland.github.io

TECHNICAL DETAILS

Programming Languages	Bash/Zsh, Python, MATLAB [®] , Julia, C++, R, I ^A T _E X
Deployment	Docker, Kubernetes, AWS/GCP/Azure, HPCC (slurm, SGE), GitHub Actions
Project Management	Jira, Confluence, Markdown, git
Machine Learning	PyTorch/Lightning, Flux.jl, TensorBoard, Guild AI, MMDetection
Models/Algorithms	CNNs, ESNs, Transformers, Llama/LLMs, YOLO, DETR/DINO, Faster-R-CNN,
, -	random forests, VAEs, compressed sensing, signal processing, numerical simulation
Tools	libROSA, Jupyter/Pluto, SciPy/NumPy, dask, ray, DeepSpeed,
	matplotlib/seaborn, streamlit, SQL
Security	US citizen, TOP SECRET clearance
5	

WORK EXPERIENCE

Nov 2023—Present Institution	SENIOR APPLIED MACHINE LEARNING ENGINEER Yurts Technologies Inc., San Francisco, CA Development and deployment of an AI-powered application suite using LLMs and associated technologies such as retrieval augmented generation (RAG).
Oct 2021—Oct 2023 Institution	SENIOR RESEARCH SCIENTIST Clarifai Inc., Wilmington, DE R&D for public sector AI/ML. Developed and optimized object detection, object tracking, and dataset enrichment algorithms using PyTorch, Docker, Kubernetes. Developed and deployed solutions on bare-metal and cloud compute. Technical lead on a multimillion dollar ARR line-of-effort as part of Project MAVEN for USDI/NGA. Competed against and outperformed trillion-dollar companies in head- to-head competition. Implemented unsupervised data preprocessing that improved state-of-the-art by up to 35% average precision on some classes. Presented at collaboration events and industry conferences. Onboarded, assigned and monitored work of senior and junior research staff. Maintained documentation on best practices/workflow for development.
Sep 2020—Sep 2021 Institution	STAFF RESEARCH SCIENTIST Boston Fusion Corp., Lexington, MA R&D for public sector AI/ML. Developed rule-based AI and machine learning models for denoising radar, maritime surveillance, sensor fusion, and semantic classification. Successfully navigated SBIR projects to Phase III as technical lead. Primary author on SBIR/STTR proposals and scrum master.
Jul 2018—Aug 2020 Principal Investigator Institution	SCIENTIFIC PROGRAMMER & DATA ANALYST Michael Hasselmo, DPHIL Center for Systems Neuroscience, Boston University, Boston, MA Designed and maintained software tools to study neuromodulation in the entorhinal cortex of rodents, including automating data analysis on high-performance computing hardware, designing statistical and numerical models, integrating state-of-the-art machine learning for motion tracking, and automating data collection in experiments using Arduino microcontrollers. Published three papers, two conference papers, and developed a tech stack still used by the lab today. Built and administrated the website. Enrolled in graduate courses concurrently through tuition remission.

Feb 2015—Jul 2018	Research Assistant in Computational Neuroscience
Principal Investigator	Eve Marder, PhD
Institution	Brandeis University, Waltham, MA
	Built software for neuronal simulation, including xolot1, which simulates at state-
	of-the-art speeds with built-in parameter optimization and real-time visualization.
	Software and documentation design patterns developed for xolotl have been adopted
	company-wide at Inscopix (VC-backed neurotech firm, \$20-25M ARR, acquired by
	Bruker Corp. in 2022). Studied neuromodulation using biophysically-realistic models
	of a motor circuit.

EDUCATION

Jan 2021-Present	PhD Student in Biomedical Engineering
Institution	Worcester Polytechnic Institute, Worcester, MA
	GPA: 4.0/4.0
Advisor	Prof. Adam Lammert, PHD
Research	Using compressive sensing and machine learning to dramatically reduce the number of trials required to characterize high-dimensional representations of tinnitus in a reverse correlation experiment.
Aug 2018-Aug 2020	Non-Degree Graduate Student in Engineering
Institution	Boston University, Boston, MA
	GPA: 3.8/4.0
Courses Taken	Linear Algebra, Statistical & Numerical Methods, Ordinary Differential Equations,
	Partial Differential Equations, Machine Learning, Universal Natural Language
	Processing, Artificial Intelligence.
May 2018	Master of Science in Neuroscience
Institution	Brandeis University, Waltham MA
	Highest Honors, GPA: $3.4/4.0$
Thesis	Differential Responses to Neuromodulation in Model Neurons
	of the Crustacean Stomatogastric Ganglion
Advisor	Prof. Eve Marder, PhD
May 2018	Bachelor of Science in Neuroscience
	BACHELOR OF SCIENCE IN BIOLOGICAL PHYSICS
Institution	Brandeis University, Waltham MA
	Highest Honors, GPA: $3.4/4.0$
	Minor in the History of Ideas
Advisors	Prof. Eve Marder, PHD & Prof. Aparna Baskaran, PHD

MAINTAINED OPEN-SOURCE PROJECTS

Dec 2022-Present Website Publications	TINNITUS RECONSTRUCTION https://alec-hoyland.github.io/tinnitus-reconstruction/ Hoyland, N. Barnett, et al. 2023; Hoyland, N. V. Barnett, et al. 2023b Reconstructs a frequency spectrum representation of the subjective internal experience of tinnitus, using human subject data from a brief alternate-forced choice task. The reconstruction algorithms are ML- and compressed sensing-based.
Dec 2019-Present Website	NEURAL DECODER https://github.com/hasselmonians/neural-decoder Produces a stochastic convolutional model of the relationship between an extrinsic observative signal and an intrinsic covarying spike train.
Aug 2018-Present Publications Website	BANDWIDTHESTIMATOR Dannenberg, Lazaro, et al. 2020; Dannenberg, Kelley, et al. 2019 https://github.com/hasselmonians/BandwidthEstimator Implements a maximum-likelihood leave-one-out cross-validated bandwidth parameter estimation algorithms for general point processes (including spike trains).
Aug 2018-Present Publications Website	RATCATCHER Dannenberg, Lazaro, et al. 2020; Dannenberg, Kelley, et al. 2019 https://github.com/hasselmonians/RatCatcher A data- & analysis-agnostic pipeline for automating analysis on a high-performance computing cluster, with a local interface. Written in MATLAB®.
Aug 2017-Present Publications Website	XOLOTL Gorur-Shandilya, Hoyland, and Marder 2018; Hoyland 2018 https://go.brandeis.edu/xolotl A fast and flexible neuronal simulator in C++ with an extensive MATLAB® front-end. Achieves state-of-the-art efficiency on non-branching models.

Funding

Jan 2022	Tinnitus Characterization using Reverse Correlation with Applications to
	Retraining Therapies, Pilot Project Program, UMASS Center for Clinical and
	Translational Science (\$50,000)
Mar 2017	Computational Neuroscience Traineeship, NIH/NIMH (\$11,000)
Apr 2016	Quantitative Biology Research Community Fellowship, HHMI (\$5,000)

PUBLICATIONS

Hoyland, Alec, Nelson V. Barnett, Benjamin W. Roop, Danae Alexandrou, Myah Caplan,
Jacob Mills, Benjamin Parrell, Divya A. Chari, and Adam C. Lammert (Jan. 6, 2023a).
Reverse Correlation Uncovers More Complete Tinnitus Spectra.
DOI: 10.1101/2022.12.23.521795. URL:
https://www.biorxiv.org/content/10.1101/2022.12.23.521795v2 (visited on 01/10/2023).
preprint.
– (2023b). "Reverse Correlation Uncovers More Complete Tinnitus Spectra".
In: IEEE Open Journal of Engineering in Medicine and Biology, pp. 1–3. ISSN: 2644-1276.
DOI: 10.1109/0JEMB.2023.3275051.
Dannenberg, Holger, Hallie Lazaro, Pranav Nambiar, Alec Hoyland, and Michael E Hasselmo
(Dec. 10, 2020). "Effects of Visual Inputs on Neural Dynamics for Coding of Location and
Running Speed in Medial Entorhinal Cortex".
In: eLife 9. Ed. by Adrien Peyrache, Laura L Colgin, and Kevin Allen, e62500. ISSN: 2050-084X.
DOI: 10.7554/eLife.62500.
URL: https://doi.org/10.7554/eLife.62500 (visited on 06/06/2022).
Hasselmo, Michael E., Andrew S. Alexander, Alec Hoyland, Jennifer C. Robinson,
Marianne J. Bezaire, G. William Chapman, Ausra Saudargiene, Lucas C. Carstensen, and
Holmen Dannenhann (Ann. 8, 2020) "The Uncernland Territory of Neural Models, Detential Cuide

Holger Dannenberg (Apr. 8, 2020). "The Unexplored Territory of Neural Models: Potential Guides for Exploring the Function of Metabotropic Neuromodulation". In: *Neuroscience*. ISSN: 0306-4522. DOI: 10.1016/j.neuroscience.2020.03.048.

URL: http://www.sciencedirect.com/science/article/pii/S0306452220302141 (visited on 06/25/2020).

- Dannenberg, Holger, Craig Kelley, Alec Hoyland, Caitlin K. Monaghan, and Michael E. Hasselmo (May 1, 2019). "The Firing Rate Speed Code of Entorhinal Speed Cells Differs across Behaviorally Relevant Time Scales and Does Not Depend on Medial Septum Inputs".
 In: Journal of Neuroscience 39.18, pp. 3434–3453. ISSN: 0270-6474, 1529-2401.
 DOI: 10.1523/JNEUROSCI.1450-18.2019. pmid: 30804092.
 URL: http://www.jneurosci.org/content/39/18/3434 (visited on 06/12/2019).
- Gorur-Shandilya, Srinivas, Alec Hoyland, and Eve Marder (2018). "Xolotl: An Intuitive and Approachable Neuron and Network Simulator for Research and Teaching".
 In: Frontiers in Neuroinformatics 12. ISSN: 1662-5196. DOI: 10.3389/fninf.2018.00087.
 URL: https://www.frontiersin.org/articles/10.3389/fninf.2018.00087/full (visited on 06/01/2021).
- Hoyland, Alec (2018). "Differential Responses to Neuromodulation in Model Neurons of the Crustacean Stomatogastric Ganglion". Thesis. Brandeis University. URL: http://bir.brandeis.edu/handle/10192/35686 (visited on 08/14/2019).

Conference Papers & Posters

Hoyland, Alec, Nelson Barnett, Benjamin Roop, Danae Alexandrou, Benjamin Parrel, Divya Chari, and Adam Lammert (Feb. 11, 2023).

"Characterizing Complex Tinnitus Sounds Using Reverse Correlation: A Feasibility Study". In: Association for Research in Otolaryngology. 46th Annual Midwinter Meeting. Orlando FL.

- Ning, Wing, John H. Bladon, Jerry Chen, S Steinwenter, Alec Hoyland, and Michael E. Hasselmo (2019). "A Cortical-Hippocampal Network Supporting the Temporal Organization of Memory". In: 2019 Neuroscience Meeting Planner. Society for Neuroscience. 164.05. Chicago, IL.
- Dannenberg, Holger, Craig Kelley, Alec Hoyland, Caitlin K. Monaghan, and Michael E. Hasselmo (2018). "Speed Coding by Entorhinal Cortex Speed Cells Differs across Behaviorally Relevant Timescales and Is Independent of Cholinergic Modulation". In: Society for Neuroscience. 508.27. San Diego, CA.

Teaching & Mentorship

Sep 2022-Dec 2022 Institution	AI/ML SUBJECT MATTER EXPERT Norfolk Collegiate School, Norfolk, VA Presented on machine learning concepts to middle school students working on a LEGO robotics competition project. Built an interactive Streamlit demo of a fully-connected neural network for demonstration purposes.
Jul 2018-Aug 2020 Institution	SCIENTIFIC COMPUTING TUTOR Boston University, Boston, MA Organized and ran a Julia learning group for undergraduate and graduate students.
Aug 2016-Aug 2018 Institution	QUANTITATIVE BIOLOGY RESEARCH COMMUNITY (QBREC) Brandeis University, Waltham, MA QBReC is an interdisciplinary undergraduate research community for handpicked Brandeis science majors, who perform hands-on research internships. Engaged in this research and mentored other students as a co-leader.
Oct 2016-Oct 2018 Institution	SPLASH TEACHING FELLOW Brandeis University, Waltham, MA Taught theoretical neuroscience courses to high-school students. Organized "lunch & learn" seminars between high school students and Brandeis faculty.
Oct 2014-Feb 2017 Institution	BRANDEIS MAKER LAB VOLUNTEER Brandeis University, Waltham, MA Worked with the Brandeis Maker Lab's 3-D printers, volunteered at the student-run hackathon geared towards learning and hardware.

References

Position Institution Phone Email	SHELLEY CAZARES, PHD Staff Research Scientist (<i>formerly</i> Research Manager) Google Public Sector Inc. (<i>formerly</i> Clarifai Inc.) 612-747-5740 scazares@alum.mit.edu
Position Institution Email	ADAM LAMMERT, PHD Assistant Professor of Biomedical Engineering (Computer Science affiliate) Worcester Polytechnic Institute alammert@wpi.edu
Position Institution Phone Email	CARL WEIR, PHD Director of Cognitive Fusion Boston Fusion 617-583-5730 carl.weir@bostonfusion.com
Position Institution Phone Email	BERNARD CHARTIER Principal Research Scientist Boston Fusion 617-583-5730 bernard.chartier@bostonfusion.com
Position Institution Phone Email	MICHAEL HASSELMO, DPHIL University Professor of Psychological & Brain Sciences Boston University 617-353-1397 hasselmo@bu.edu
Position Institution Phone Email	EVE MARDER, PHD University Professor of Neuroscience Brandeis University 781-736-3140 marder@brandeis.edu