[1]
A. Hoyland
et al., “Reverse Correlation Uncovers More Complete Tinnitus Spectra,”
IEEE Open Journal of Engineering in Medicine and Biology, pp. 1–3, 2023, doi:
10.1109/OJEMB.2023.3275051.
[2]
A. Hoyland et al., “Characterizing Complex Tinnitus Sounds Using Reverse Correlation: A Feasibility Study,” in Association for Research in Otolaryngology, Orlando FL, Feb. 2023.
[3]
A. Hoyland
et al., “Reverse Correlation Uncovers More Complete Tinnitus Spectra.” bioRxiv, p. 2022.12.23.521795, Jan. 06, 2023. doi:
10.1101/2022.12.23.521795.
[4]
H. Dannenberg, H. Lazaro, P. Nambiar, A. Hoyland, and M. E. Hasselmo, “Effects of visual inputs on neural dynamics for coding of location and running speed in medial entorhinal cortex,”
eLife, vol. 9, p. e62500, Dec. 2020, doi:
10.7554/eLife.62500.
[5]
M. E. Hasselmo
et al., “The Unexplored Territory of Neural Models: Potential Guides for Exploring the Function of Metabotropic Neuromodulation,”
Neuroscience, Apr. 2020, doi:
10.1016/j.neuroscience.2020.03.048.
[6]
H. Dannenberg, C. Kelley, A. Hoyland, C. K. Monaghan, and M. E. Hasselmo, “Speed coding by entorhinal cortex speed cells differs across behaviorally relevant timescales and is independent of cholinergic modulation,” presented at the Society for Neuroscience, in 508.27. San Diego, CA, 2018.
[7]
W. Ning, J. H. Bladon, J. Chen, S. Steinwenter, A. Hoyland, and M. E. Hasselmo, “A cortical-hippocampal network supporting the temporal organization of memory,” in 2019 Neuroscience Meeting Planner, in 164.05. Chicago, IL, 2019.
[8]
A. Hoyland, “Differential Responses to Neuromodulation in Model Neurons of the Crustacean Stomatogastric Ganglion,” Thesis, Brandeis University, 2018. Accessed: Aug. 14, 2019. [Online]. Available:
http://bir.brandeis.edu/handle/10192/35686 [9]
H. Dannenberg, C. Kelley, A. Hoyland, C. K. Monaghan, and M. E. Hasselmo, “The Firing Rate Speed Code of Entorhinal Speed Cells Differs across Behaviorally Relevant Time Scales and Does Not Depend on Medial Septum Inputs,”
J. Neurosci., vol. 39, no. 18, pp. 3434–3453, May 2019, doi:
10.1523/JNEUROSCI.1450-18.2019.
[10]
S. Gorur-Shandilya, A. Hoyland, and E. Marder, “Xolotl: An Intuitive and Approachable Neuron and Network Simulator for Research and Teaching,”
Front. Neuroinform., vol. 12, 2018, doi:
10.3389/fninf.2018.00087.